首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8764篇
  免费   788篇
  国内免费   3篇
  2021年   73篇
  2020年   52篇
  2019年   66篇
  2018年   100篇
  2017年   93篇
  2016年   125篇
  2015年   200篇
  2014年   241篇
  2013年   479篇
  2012年   400篇
  2011年   408篇
  2010年   245篇
  2009年   223篇
  2008年   382篇
  2007年   412篇
  2006年   388篇
  2005年   407篇
  2004年   375篇
  2003年   360篇
  2002年   366篇
  2001年   322篇
  2000年   364篇
  1999年   334篇
  1998年   105篇
  1997年   88篇
  1996年   94篇
  1995年   98篇
  1994年   84篇
  1993年   109篇
  1992年   272篇
  1991年   182篇
  1990年   197篇
  1989年   199篇
  1988年   304篇
  1987年   175篇
  1986年   149篇
  1985年   131篇
  1984年   103篇
  1983年   85篇
  1982年   56篇
  1981年   58篇
  1979年   74篇
  1978年   56篇
  1977年   39篇
  1976年   42篇
  1975年   42篇
  1974年   57篇
  1973年   42篇
  1972年   49篇
  1968年   37篇
排序方式: 共有9555条查询结果,搜索用时 46 毫秒
991.
Tri(2-pyridylmethyl)amineCu complex-linked iron meso-tetraphenylporphyine derivatives were prepared to model the active site of cytochrome c oxidase. Exposure to oxygen converted the reduced forms of the complexes to the corresponding stable mu-peroxo species in spite of the presence of three coordination sites, two on the heme and one on the Cu. The oxy forms were characterized spectroscopically. Kinetic analyses of the oxygenation reactions of the reduced forms suggests that preferential O2 binding occurs at the Cu site over the heme. This mechanism is also supported by examination of the redox potentials of the two metal ions. Since the peroxy complexes of the models exhibit a structure similar to that of the previously reported fully-oxidized form, the relevance of the model chemistry to the enzyme reaction is discussed.  相似文献   
992.
Inwardly directed Ca(2+)-dependent chloride currents are thought to prolong and boost the odorant-induced transient receptor currents in olfactory cilia. Cl(-) inward current, of course, requires a sufficiently high intracellular Cl(-) concentration ([Cl(-)](i)). In previous measurements using a fluorescent Cl(-) probe, N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE), [Cl(-)](i) of newt olfactory cells was estimated to be only 40 mM. This low value led us to reexamine the [Cl(-)](i) by an improved procedure. When isolated rat olfactory neurons were bathed in Tyrode's solution (150 mM Cl(-)) at room temperature, the [Cl(-)] was 81.5 +/- 13.5 mM (mean +/- SE) in the tip of the dendrite (olfactory knob) and 81.8 +/- 10.2 mM (mean +/- SE) in the soma. The corresponding Cl(-) equilibrium potentials were -15.4 and -15.3 mV, respectively. Therefore, at resting potentials in the range of -90 to -50 mV, Cl(-) currents are predicted to be inward and capable of contributing to the depolarization induced by odorants. Yet, if the cell was depolarized beyond -15 mV, somal Cl(-) currents would be outward and facilitate repolarization during excitation. The measured [Cl(-)] in soma and knob are of interest, because in the cilia the chloride content may be expected to equilibrate with that of the knob in the resting state. They provide a starting point for the decrease in ciliary [Cl(-)] predicted to occur during transduction.  相似文献   
993.
We previously showed that zooxanthellatoxin-B, isolated from dinoflagellate, caused a sustained contraction of the aorta in an external Ca2+-dependent manner. To clarify the role of Ca2+ in this action, we examined the effects of zooxanthellatoxin-B as well as a depolarizing stimulus (60 mM KCl), using the simultaneous recording for cytosolic Ca2+ level (fura-2) and developed tension in the rabbit aorta. KCl (60 mM) elicited a rapid cytosolic Ca2+ elevation followed by a pronounced contraction, and time required for half-maximum contraction was 2 min. Zooxanthellatoxin-B caused an increase in cytosolic Ca2+ followed by a gradual contraction, with a time for half-maximum contraction of 5-10 min in a concentration-dependent manner. We found a strong correlation between Ca2+ elevation and the contraction in zooxanthellatoxin-B action. In a Ca2+-free solution, zooxanthellatoxin-B caused neither the contraction nor the increase in cytosolic Ca2+. Furthermore, both pre- and post-treatment with verapamil, a voltage-operated Ca2+-channel blocker, partially suppressed both an increase in cytosolic Ca2+ and the contraction by zooxanthellatoxin-B. Zooxanthellatoxin-B-induced contraction was also inhibited by other voltage-operated Ca2+-channel blockers: nifedipine or diltiazem. These results suggest that zooxanthellatoxin-B-elicited contraction is caused by a Ca2+ influx into the smooth muscle cells, partially via voltage-operated Ca2+ channels.  相似文献   
994.
The relaxation effect of cilostazol, a phosphodiesterase III inhibitor, on the thoracic aorta was investigated. Cilostazol induced the relaxation of the thoracic aorta precontracted by phenylephrine in a concentration-dependent manner. The concentration-dependent relaxation was shifted to the right in the endothelium denuded aorta compared with that of intact endothelium, suggesting that this relaxation was partly dependent on endothelium. Cilostazol-induced relaxation of thoracic aorta tone was reversed by treatment with N(G)-nitro L-arginine (L-NNA), a competitive inhibitor of nitric oxide (NO) synthase. Cilostazol also significantly increased the NO level in the porcine thoracic aorta. In rats treated with cilostazol, the urinary excretion of nitrites, a stable metabolite of NO, and basal production of NO of the aortic ring were significantly greater than in those without treatment. These findings indicate that cilostazol-induced vasodilation of the rat thoracic aorta was dependent on the endothelium, which released NO from aortic endothelial cells.  相似文献   
995.
PDMP (D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol) and PPMP (D,L-threo-1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol), inhibitors of glucosylceramide synthesis, blocked brefeldin A (BFA)- and nordihydroguaiaretic acid-induced dispersal of the Golgi and trans Golgi network, and Golgi-derived vesicles were retained in the juxtanuclear region. PDMP and PPMP did not stabilize microtubules but blocked nocodazole-induced extensive fragmentation and dispersal of the Golgi, and large Golgi vesicles were retained in the juxtanuclear region. PPMP is a stronger inhibitor of glucosylceramide synthesis than PDMP, but PDMP showed a stronger activity against BFA-induced retrograde membrane flow. However, PPMP showed a stronger activity for Golgi disruption and inhibition of anterograde trafficking from the endoplasmic reticulum, and rebuilding of the Golgi architecture. Cumulatively, these results suggest that sphingolipid metabolism is implicated in maintenance of the Golgi architecture and anterograde membrane flow from the endoplasmic reticulum but not in Golgi dispersal induced by BFA.  相似文献   
996.
Clofibrate-induced retrograde Golgi membrane movement was blocked or retarded when NRK cells were treated with sodium azide/2-deoxyglucose, nocodazole, taxol, and destruxin B, indicating that it depends on energy, and the dynamic state of microtubules, and being acidic or vacuolar-type ATPase function. PDMP and phospholipase A2 inhibitors also blocked it. These characteristics are similar to those of brefeldin A (BFA) and nordihydroguaiaretic acid (NDGA), inducers of retrograde Golgi membrane movement. However, clofibrate was distinguished from BFA in that BFA action was insensitive to phospholipase A2 inhibitors and from NDGA in that NDGA stabilized microtubules against nocodazole and its action was almost insensitive to taxol. The trans Golgi network (TGN) was resistant to clofibrate, while BFA and NDGA dispersed it. To our knowledge, clofibrate is the first drug to show such different effects on the Golgi and TGN and, therefore, is expected to be a useful tool to distinguish their architecture and/or membrane dynamics.  相似文献   
997.
Osaki  M.  Shinano  T.  Kaneda  T.  Yamada  S.  Nakamura  T. 《Photosynthetica》2001,39(2):205-213
Ontogenetic changes of rates of photon-saturated photosynthesis (P sat) and dark respiration (R D) of individual leaves were examined in relation to nitrogen content (Nc) in rice, winter wheat, maize, soybean, field bean, tomato, potato, and beet. P sat was positively correlated with Nc as follows: P sat = CfNc + P sat0, where Cf and P sat0 are coefficients. The value of Cf was high in maize, medium in rice and soybean, and low in field bean, potato, tomato, and beet, of which difference was not explained by ribulose-1,5-bisphoshate carboxylase/oxygenase (RuBPCO) content. R D was explained by P sat and/or Nc, however, two models must be applied according to plant species. R D related linearly with P sat and Nc in maize, field bean, and potato as follows: R D = a P sat + b, or R D = aNc + b, where a, a, b and b are coefficients. In other species, the R D/P sat ratio increased exponentially with the decrease of Nc as follows: R D/P sat = a exp(b Nc), where a and b are coefficients. Therefore, R D in these crops was expressed as follows: In(R D) = ln(a P sat) + b Nc, indicating that R D in these crops was regulated by both P sat and Nc.  相似文献   
998.
 Gangliosides GD3, GD2 and GM2, which are the major gangliosides expressed on most human cancers of neuroectodermal and epithelial origin, have been focused on as effective targets for passive immunotherapy with monoclonal antibodies. We previously developed a chimeric anti-GD3 mAb, KM871, and a humanized anti-GM2 mAb, KM8969, which specifically bound to the respective antigen with high affinity and showed potent immune effector functions. Humanization of anti-ganglioside antibody is expected to enhance its use for human cancer therapy. In the present study, we generated a chimeric anti-GD2 mAb, KM1138, and further developed the humanized form of anti-GD2 and anti-GD3 mAbs by the complementarity-determining regions grafting method. The resultant humanized anti-GD2 mAb, KM8138, and anti-GD3 mAb, KM8871, showed binding affinity and specificity similar to those of their chimeric counterparts. In addition, both humanized mAbs had functional potency comparable to the chimeric mAbs in mediating the immune effector functions, consisting of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. The production of these humanized anti-ganglioside mAbs, with potent effector functions and low immunogenicity, precedes the evaluation of the therapeutic value of anti-ganglioside mAbs in passive immunotherapy and the target validation for ganglioside-based vaccine therapy. Received: 30 November 2000 / Accepted: 30 January 2001  相似文献   
999.
The initiator protein RepE of the mini-F plasmid in Escherichia coli plays an essential role in DNA replication, which is regulated by the molecular chaperone-dependent oligomeric state (monomer or dimer). Crosslinking, ultracentrifugation, and gel filtration analyses showed that the solely expressed N-terminal domain (residues 1-144 or 1-152) exists in the dimeric state as in the wild-type RepE protein. This result indicates that the N-terminal domain functions as a dimerization domain of RepE and might be important for the interaction with the molecular chaperones. The N-terminal domain dimer has been crystallized in order to obtain structural insight into the regulation of the monomer/dimer conversion of RepE.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号